Contact

UK Office

Only Medics
33 Blagrave Street
Reading, Berkshire
RG1 1PW, UK

Tel -
+44(0)1189 522799

Email -
info@onlymedics.com

EU Office

Only Medics
11 - 12 Bouverie Street
London
EC4Y 8DP, UK

Tel -
+44(0)2078 221719

Share &
Connect


Keep connected & join the Only Medics Network here.

Only Medics LinkedIn Only Medics Facebook Only Medics Twitter
Clinical Professionals Pinterest Clinical Professionals YouTube Only Medics Google+
Pharmaceutical Jobs Integrated Regulatory Outsourcing Medical Communication Jobs

It has been assumed for many years that Alzheimer’s disease, the leading cause of dementia, originated from the brain. However, research from the University of British Columbia and Chinese scientists indicates that it could be triggered by breakdowns elsewhere in the body. The findings, published today in Molecular Psychiatry, offer hope that future drug therapies might have the potential to stop or slow the disease without acting directly on the brain, which is a complex and often hard-to-reach target. Instead, such drugs could target the kidney or liver, ridding the blood of a toxic protein before it ever reaches the brain.

The scientists demonstrated this cancer-like mobility through a technique called parabiosis, a technique that involves surgically attaching two specimens together, so they share the same blood supply for several months.

UBC Psychiatry Professor, Dr. Weihong Song, and Neurology Professor, Yan-Jiang Wang ,at Third Military Medical University in Chongqing, attached normal mice, which don't naturally develop Alzheimer's disease, to mice modified to carry a mutant human gene that produces high levels of a protein called amyloid-beta. A protein that within those with the disease forms clumps or "plaques" that smother brain cells.

Normal mice that had been joined to genetically modified partners for a year "contracted" Alzheimer's disease. Song says the amyloid-beta travelled from the genetically-modified mice to the brains of their normal partners, where it accumulated and began to inflict damage.

Not only did the normal mice develop plaques, but also a pathology similar to "tangles" - twisted protein strands that form inside brain cells, disrupting their function and eventually killing them from the inside-out. Other signs of Alzheimer's-like damage included brain cell degeneration, inflammation and microbleeds. In addition, the ability to transmit electrical signals involved in learning and memory (a sign of a healthy brain) was impaired, even in mice that had been joined for just four months.

Besides the brain, amyloid-beta is produced in blood platelets, blood vessels and muscles, and its precursor protein is found in several other organs. However, until these experiments, it was unclear if amyloid-beta from outside the brain could contribute to Alzheimer's disease. This study, Song says, shows it can.

"The blood-brain barrier weakens as we age," says Song, a Canada Research Chair in Alzheimer's Disease and the Jack Brown and Family Professor. "That might allow more amyloid beta to infiltrate the brain, supplementing what is produced by the brain itself and accelerating the deterioration."

Song, Head of UBC's Townsend Family Laboratories, envisions a drug that would bind to amyloid-beta throughout the body, tagging it biochemically in such a way that the liver or kidneys could clear it.

"Alzheimer's disease is clearly a disease of the brain, but we need to pay attention to the whole body to understand where it comes from, and how to stop it," he says.

Source: WorldPharmaNews

Return to the news archive

Job Search

Advanced job search

Register your C.V.